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Abstract 

Evidence grids provide a uniform representation fo r  
fusing temporally and spatially distinct sensor read- 
ings. However, the use of evidence grids requires that 
the robot be localizeo! within its environment. Odome- 
try errors typically accumulate over time, making lo- 
calization estimates degrade, and introducing signifi- 
cant errors into evidence grads as they are built. W e  
have addressed this problem b y  developing a method 
for “continuous locarlization”, in which the robot cor- 
rects its localization estimates incrementally and on 
the fly. Assuming the mobile robot has a map of its 
environment represented as an evidence grid, local- 
ization is achieved by building a series of Yocal per- 
ception grids” based on localized sensor readings and 
the current odometry, and then registering the local 
and global grids. The registration produces an offset 
which is used to correct the odometry. Results are 
given on the effectiveness of this method, and quantify 
the improvement of continuous localization over dead 
reckoning. W e  also compare different techniques for 
matching evidence grids and for searching registration 
offsets. 

1 1ntroductio:n 

For mobile robots to perform autonomously in dy- 
namic environments, they need to have the ability to 
determine their location in their environment. Previ- 
ous techniques for localization have looked at learning 
and recognizing 1and.marks in the environment, either 
as geometric representations or as a representation of 
sensor readings. In this study, the robot does not need 
to rely on the presence of specific landmarks, but in- 
stead uses the entire local environment of the robot 
to determine its location. 

An important issue in localization is how often to 
relocalize the robot in its environment. Many exist- 
ing techniques only occasionally relocalize when either 
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an error in position is detected or after an unaccept- 
able level of positional error has accumulated. Many 
techniques attempt to model the actual error bounds. 
Here we propose to use continuous localization (CL). 
In CL, the robot is continuously relocalized making 
regular small corrections instead of occasionally mak- 
ing large corrections. The benefit is that the error is 
known to be small, and fast correction techniques can 
be used. 

Other important issues are the sensors used for lo- 
calization and the representation used to capture the 
sensed data. A wide variety of representations and 
sensors have been used, but in most cases, the data 
has come from a single sensor type, such as stereo 
optic vision. In this work, an evidence grid represen- 
tation has been used [3,8,9]. Evidence grids provide a 
uniform representation for fusing temporally and spa- 
tially distinct sensor readings. All robot sensors can 
contribute to the task of localization, and the system 
is robust in the face of sensor failures and noise in 
individual sensor readings. 

In this work, we have an a priori long-term map1 
which is an evidence grid representation of the re- 
gion (room). The robot builds short-term perception 
maps of its immediate environment. These maps are 
of a short duration, and typically contain only very 
small amounts of positional or rotational error. These 
short term maps are then used to position the robot 
within the long-term map via a registration process, 
the offset of which is used to correct the robot’s cur- 
rent odometry. 

In this paper, we show that this technique is capa- 
ble of eliminating accumulated odometry errors with 
a resulting constant translational error on the order of 
five inches, or approximately the size of an evidence 
grid cell. We also compare different techniques for 
matching evidence grids and for searching for regis- 
tration offsets. 

In Section 2, we briefly describe our representation 

Current work is examining how to simultaneously learn 
maps while using them to stay localized[l2]. 
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for long-term and short-term perception maps, and 
describe how these maps may be registered. In Sec- 
tion 3, the method for CL is described. The robotic 
platform used in our experiments is presented in Sec- 
tion 4. We give the results of several experiments 
that demonstrate the technique’s ability in Section 5. 
In Section 6 we describe related work, and we give a 
conclusion in Section 7. 

2 Representation 

With evidence grid representations a volume is di- 
vided into cells. Each cell contains a real value in 
the range (-1,l) that represents the amount of evi- 
dence that a cell is occupied (1) or unoccupied (-l), 
or indicates that there is not enough information to 
determine the occupancy of the cell2. Cells are up- 
dated from sensor readings that are filtered through 
a stochastic sensor model that determines the sensor 
reading’s influence on each cell, based on the pose 
(position and orientation) of the sensor at the time 
of the reading. After each sensor reading, all relevant 
cells are updated using the new evidence from the sen- 
sor. Several techniques have been used to update the 
evidence in the evidence grid representation includ- 
ing Bayesian techniques [8, 31, and Dempster-Shafer 
techniques 191. In the work reported here, Bayesian 
updating is used. 

Although evidence grids may represent a three- 
dimensional space, our initial results examine a single 
horizontal layer of the evidence grid that is located at 
the height of the sensors. In Section 7, we will discuss 
the use of all horizontal layers of the evidence grid. 

Evidence grids have the advantage that they can 
perform sensor fusion, that is, they can combine the 
results from different sensors into the same represen- 
tation. Evidence grids can also be updated in real 
time, allowing them to be successfully used for CL. 
Also, evidence grids are responsive to  slow environ- 
mental changes; changes in the environment will be 
updated in the representation with additional sensor 
readings. 

Many researchers currently use evidence grid rep- 
resentations in mobile robotics. One problem of using 
this representation of space is that the updating of 
the map with sensor readings requires that the cur- 
rent position and pose of the sensor be known. Unfor- 
tunately, odometry errors typically accumulate over 

21n the Bayesian method, a value of 0 indicates that being 
occupied or being empty are equally likely, and this value is 
generally used as the priors. In the Dempster-Shafer method, 
not having enough evidence can be explicitly modeled. 

time, making localization estimates degrade, and in- 
troducing significant errors into evidence grids as they 
are built. We have addressed this problem by devel- 
oping the CL technique, in which the robot corrects 
its localization estimates incrementally and on the fly. 

2.1 Long-term maps 

A long-term map is an evidence grid representa- 
tion of the environment that is built from many sen- 
sor readings, over a long time period in that region of 
space. In this paper, the evidence grids are produced 
in advance. Typically, each evidence grid will repre- 
sent approximately one “room” in the environment. 
All sensor data contributes to this map, and this is 
the map that is used by other robotic processes, such 
as navigation and path planning. Fig. 1 shows an 
evidence grid of the robotic laboratory at NCARAI. 
The white space represents cells that have great evi- 
dence of the cell not being occupied (free space), the 
larger the circle, the greater the evidence of the cell 
being occupied. The medium size circles (like in the 
outer parts of Fig. 1) indicate cells where no evidence 
exists. 

Figure 1: Long-term map of laboratory 

2.2 Short-term perception maps 

A short-term (or local) perception map represents 
the immediate temporal and spatial environment of 
the robot as an evidence grid. Only very recent sen- 
sor readings of the robot contribute to the local per- 
ception map. Several local perception maps of the 
robot’s environment may exist at the same time, each 
with a different amount of sensor data contributing to 
the “maturity” of that map. A short-term perception 
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map is considered mature when it has reached a limit 
in the amount of positional error that may have ac- 
cumulated in the map. After a map has matured, it 
is used for correction of positional error, and then it 
is discarded. 

Fig. 2 shows a short-term perception map recorded 
by the robot while it was in the upper, left hand corner 
of the room in Fig. 1. The circles and white space 
have the same meaning as in the previous figure. Note 
that objects are present in the short-term map that 
were not present when the long-term map was created. 

Figure 2: A short-term perception map 

3 Continuous Localization 

CL exploits the fact that the robot's odometric er- 
ror usually increases gradually over time, except in 
extreme cases such as when the robot hits an obsta- 
cle, etc. By performing relocalization often, less effort 
is required to correct the error in odometry. 

Fig. 3 shows a diagram of the CL process. Short- 
term perception maps are generated at regular inter- 
vals and several are maintained in memory. At the 
beginning of each interval, a new short-term percep- 
tion map is created. During the time interval, new 
sensor data are fed to the new map and the previous 
maps still in memory. At the end of the interval, the 
oldest (most mature) short-term map is used to per- 
form the registration against the long-term map and 
then discarded. The number of short-term maps that 
exist simultaneously and the amount of data that is 
entered into each map are runtime parameters of the 
system. 

The registration of the short-term map to the long- 
term evidence grid produces an offset in both trans- 

lation and rotation between the two. This offset, re- 
quired to make the short-term map align with the 
longterm-map, is the same offset required to align the 
robot with the world, and is directly applied to the 
robot odometry (taking into account any robot mo- 
tion since the registration was performed). All robot 
processes then use this new odometry. 

The registration process involves a search in the 
space of offsets in translation and rotation that mini- 
mizes the error in the match between the short-term 
and long-term maps. Since we expect the odometry 
error to be small, we restrict the registration search to 
be between f 6 inches in translation and f 2 '  in angle. 
(These values can also be changed as runtime parame- 
ters.) This restricted search space allows the search to 
be completed quickly, specifically before the interval 
expires and the next registration is attempted. 

In Section 5.1, we will present an experiment that 
shows the effectiveness of CL. In Section 5.2, the ef- 
fectiveness of several search and match functions are 
examined in detail. As will be shown, the technique is 
robust to several methods of both search and match 
functions. In the next section, we will describe the 
robot platform. 

4 Robot and sensor platform 

A Nomadic Technologies Nomad 200 robot is used 
in the following experiments. The robot uses a three- 
wheel synchronized steering system. The robot is con- 
trolled by an on-board Pentium-based computer that 
is running the Linux operating system. The robot 
also has a radio ethernet, allowing processes to run 
concurrently on other workstations on the network. 

Although the Nomad 200 has other sensors, only 
two types of sensors are used for CL in these exper- 
iments. A set of 16 sonar sensors are evenly spaced 
around the robot approximately 28 inches above the 
floor, each with a half-cone of 11.5 degrees and a 
range from six inches to ten feet. The robot also has 
a triangulation-based structured light range finder. 
This system returns 482 range data in a 15 degree 
arc parallel to and 31 inches above the floor. The 
range of this system, as configured, is 12 feet. 

For use with the evidence grids, each sensor has a 
sensor model which determines how each cell in the 
evidence grid is updated based on the sensor position 
and datum returned. For the sonar sensor model, grid 
cells in an arc at the sensed range receive a higher ev- 
idence of being occupied, while cells between the sen- 
sor and the sensed distance receive reduced evidence 
of being occupied. Since the sonars are more likely 
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window of odometry error 
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long term map 

I 
x,y.theta offset to 
correct odometty 

to detect an object near its axis, cells closer to the 
sensor’s axis receive larger adjustments than cells far 
from the axis. More information on the sonar sensor 
model is available in [SI. The sensor model for the 
structured light range finder provides strong evidence 
at the cell where the range datum lies, but makes no 
adjustment to any intermediate cells. 

Sonar sensors can provide only coarse evidence of 
occupied space due to their wide field, but they are 
very effective at determining empty space, as an ob- 
ject anywhere within that space would likely have re- 
sulted in a shorter sensed range. The structured light 
range finder has the opposite properties. It can sense 
occupied space at a high resolution, but its horizontal, 
2-D nature prevents it from sensing objects above or 
below the structured light plane. It therefore cannot 
be used with any confidence to rule the intervening 
space as empty. 

5 Experiments 

Several experiments 

Figure 3: Continuous localization 
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were performed to  determine 
the effectiveness of CL at reducing odometric error, 
and to determine which of several match functions 
and search functions yield better results. 

5.1 Effectiveness of CL 

The first experiment was conducted in a room mea- 
suring roughly 26 feet by 30 feet, open in the center 
with bookcases, desks, and chairs around the edges 
of the room. The robot was commanded to follow a 
square path near the center of the room, 8 feet on 
each side, by traveling to each corner’s coordinates 

in turn. CL ran independently of the motion pro- 
cess, maintaining 4 short-term perception maps and 
relocalizing approximately every 8 feet (each mature 
short-term map contained sensor data gathered dur- 
ing the most recent 32 f t  of travel). The registration 
search method used was center-of-mass with the bi- 
nary match function (described in detail in section 
5.2). 

Ten runs were made, with each run consisting of 80 
laps around the square, a distance of 2560 feet (ap- 
proximately 2 hours duration). The distance between 
the robot’s odometic position and its true position was 
computed at the same corner for each lap. This mea- 
sure includes rotational error, as motion causes error 
in orientation to be reflected as an error in position. 

The results are displayed in Fig. 4 as an aver- 
age across all ten runs. The robot’s nonlocalized 
pose (simple dead-reckoning) steadily drifted, grow- 
ing without bound. The localized curve shows that 
continuous localization was able to keep the robot’s 
pose error at a constant level, averaging 5.35 inches 
(136 mm) and with a standard deviation of 2.08 inches 
(53 mm) across all points of all runs. 

5.2 Search and Match Functions 

The second set of experiments were run to deter- 
mine the best of several search routines and matching 
functions that could be used to  register the long-term 
and short-term perception maps. 

In order to describe the search routines, it is use- 
ful to first describe the search space in which they 
work. The search space is all possible poses within 
f 6 inches in translation and f.2” in rotation of the 
robot’s current pose. This corresponds to a 3-D space 



Figure 4: Experiment 1: Effect of continuous local- 
ization 

with axes x, y and theta. 
The two search routines tested were an iterated hill- 

climber and a center-of-mass calculation. 
The iterated hillclimber search (designated in the 

text and graphs as H )  uses an initial resolution to di- 
vide the space into pose cells. The match between the 
short-term map and the long-term map is computed 
for the robot’s pose and the center of the 26 immedi- 
ately neighboring pose cells (33 - 1). If a neighbor is 
found with a better match, then the process repeats 
using that pose cell as the center. If no neighbor is 
found to be better, then the hillclimber re-divides the 
space at double the resolution and repeats the process. 
The search stops when a predetermined resolution is 
reached. For the experiments reported here, an initial 
step size of 1.5 inches and 1.25 degrees was used, with 
a final resolution of 0.375 inches and 0.3125 degrees. 

The “center-of-mass” search (designated in this 
paper as C) similarly divides the search space into 
pose cells, but picks a random pose within each pose 
cell and uses those random poses to compute a set 
of match scores that are distributed throughout the 
search space. The match scores are normalized to the 
range [0,1], raised to the fourth power to exaggerate 
the peak, and then a center-of mass calculation is per- 
formed for all cells. The exaggeration of the peak is 
necessary because the match score is typically very 
flat within the small search space, and without it the 
center-of-mass calculation would always pick a pose 
near the center of the search space (very close to the 
robot’s current pose). The center-of-mass calculation 

is preferable to simply choosing the pose cell with the 
maximum score because the sparse sampling of the 
space (one pose per pose cell) can create additional 
noise, and sampling at a higher resolution would be 
computationally prohibitive for real time operation. 

The two match functions examined in this work 
are designated the binary match (referred to in this 
paper as B ) ,  and the product match (referred to in this 
paper as P) .  For both functions, the short-term map 
is aligned with the long-term map according to the 
pose from the pose cell the search is processing. The 
evidence from each grid cell of the short-term map is 
compared to the spatially-correspondent grid cell of 
the long-term map, and the score summed across all 
grid cells. Given the alignment for which the match 
score is to be computed, if CL is the corresponding 
cell in the long-term map to the short-term map cell 
Cs, then we define the match score: 

Matchscore = CellScore(Cs,, CL,) 
all cs 

For each match function, the cell scores are de- 
termined as follows. The binary match function ( B )  
compares the cells’ evidence for simple agreement. It 
returns 1 if the cells agree occupied or agree empty, 
and returns 0 if they disagree or if either cell has no 
evidence (a value of 0). 

1 if 0 < CS, , 0 < CL, 
1 if 0 > Cs, , 0 > CL, CellScore(Cs,, CL;) = { 0 otherwise 

The product match function ( P )  determines the 
degree of agreement, taking the product of the cells’ 
actual evidence, a value between -1 (empty) and 1 
(occupied). Cells in agreement produce a score in 
the range (0, 11, depending on the confidence of their 
individual evidence. Cells in disagreement produce a 
score in the range [-1, 0), and if either cell has no 
evidence, a score of 0 is produced. 

CellScore(Cs,, CL;)  = Cs, CL, 

Early work with the CL method revealed that the 
search space had large regions in which many regis- 
tration poses resulted in the same match scores. This 
effect was suspected of causing the hillclimber to give 
up early due to the inability to find a better neighbor 
in the search space, resulting in a non-optimal choice 
of pose. To counter this problem, interpolation (des- 
ignated with a I in the following text and graphs) 
can be performed on the long-term grid cells, such 
that the center of each grid cell retains its original ev- 
idence, but other locations within that grid cell have 
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evidence values bilinearly interpolated with neighbor- 
ing grid cells. When the search routine aligns the 
center of the short-term map cells with the longterm 
map cells, the interpolated evidence value is used for 
computing the match score. Small variations in pose 
(map alignment) can thus yield differing correspond- 
ing long-term map cell values and thus differing over- 
all match scores. 

To evaluate the various combinations, the same en- 
vironment was used as in the first experiment, with 
the robot following the same square path and with 
pose error being measured at the same corner. Eight 
trials were conducted, with each trial being a unique 
combination of search routine, match function and in- 
terpoiation. (In the following figures and discussion, 
each trial is designated by the combination of letters 
H, C, B ,  P, I indicating which of the above techniques 
are being used. For each trial, 5 runs were made (ex- 
cept CP, CPI which had 10 runs). Each run consisted 
of 40 measured points (40 laps), with the pose error 
measured as before. 

Shown in Fig. 5 is the average pose error across 
all runs for each trial. Error bars indicate a 95% 
confidence interval. As a group, the center-of-mass 
combinations were significantly better ( p  = .01) than 
those using the hillclimber. In all cases, the binary 
and product match functions performed equivalently. 
Being of roughly comparable computational cost, we 
have chosen the product match function ( B ) .  

The CP and CPI combinations did not have sig- 
nificantly different performance, nor did interpola- 
tion have any consistent effect overall. Interpolation’s 
smoothing of the search space appears unnecessary 
when used with the center-of-mass search, which per- 
forms its own smoothing during the averaging process 
inherent to it. Since interpolation incurs additional 
computational cost without providing any additional 
benefit, the CP combination was selected for future 
work. 
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In [ll], Yamauchi uses evidence grids to perform 
occasional localization by matching evidence grids. In 
that study, evidence grids are created for each specific 
“place” along the robots path. When the robot revis- 
ited a specific place, it created a new evidence grid to 
match against the evidence grid for that location to 
correct its position. 

An alternate search method by Lu [7] looks promis- 
ing although it is intended for free-form scans without 
the use of evidence grids, and the effect of using it on 
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Figure 5: Experiment 2: Different search and match 
functions compared 

2838 

the artificially rasterized data of evidence grids is an 
open question. 

In an approach similar to that presented here, 
Schiele and Crowley [lo] compared grid matching to 
other localization methods that included detecting 
and matching edge segments in the evidence grids. 
Their work did not give quantitative results on match- 
ing evidence grids, nor did it examine various meth- 
ods for matching or searching for poses. The work 
presented here seeks to determine the sensitivity of 
grid matching to changes in some of its fundamental 
parameters and determine suitable values for them. 

Many localization techniques rely on structures in 
the environment that can serve as landmarks, for ex- 
ample, vertical structures such as door posts and poles 
[2], large planes [5], or other geometric beacons [6]. 
Using specific landmarks often requires the robot to 
perform special maneuvers in order to locate or recog- 
nize these landmarks [l]. In our work, such maneuvers 
are unnecessary. Because our method uses all avail- 
able sensor data without the requirement of specific 

self transparently while carrying out its assigned task. 
features in the environment, the robot can localize it- 

7 Conclusions/continued work 

Many match functions and search methods are pos- 
sible and we have only shown the performance of a few 
combinations. However, the method of continuous lo- 
calization presented here has been shown to be robust 



to the registration search method and match function. 
We have achieved an average pose error equivalent to 
the size of the evidence grid cell, and do not believe 
that other combinations would produce significantly 
better performance. Because evidence grids can fuse 
sensor readings, other combinations of sensors can be 
used. In future studies, we are interested in how other 
combinations of sensors will perform. 

One problem others have noted with evidence grids 
is the inability to handle dynamic environments. We 
are looking at a method of updating the long-term 
map with the short-term map in order to track slow 
changes in the room, such as moved furniture, doors 
opened or closed, and blocked passages. Initial results 
indicate that the long-term map can be adaptive to 
changing environments, and still allow CL to work 
well [4]. 

A second problem occurs when there is a sudden 
large change in the robot’s odometry, such as a hard 
collision that allows the wheels to slip. We are inves- 

[4] Graves, K., Adams, W., and Schultz, A., 
“Continuous Localization in Changing Environ- 
ments,” proc. of the IEEE Int. Symp. on Com- 
putational Intelligence in Robotics and Automa- 
tion, IEEE, Monterey, CA, July, 1997. 

[5] Horn, J. and Schmidt, M., “Continuous local- 
ization of a mobile robot based on 3D-laser- 
range-data, predicted sensor images, and dead- 
reckoning,” Robotics and Autonomous Systems 
14: Elsevier, pp 99-118, 1995. 

[6] Leonard, J., Durrant-Whyte, H., and Cox, I., 
“Dynamic map building for an Autonomous 
Mobile Robot ,” The International Journal of 
Robotics Research 11: IEEE, pp 286-298 ,1992. 

[7] Lu, F., and Milios, E., “Robot pose estimation in 
unknown environments by matching 2-D Range 
scans,” proc. IEEE Computer Vision and Pattern 
Recognition, Seattle: IEEE, pp 935-938, 1994. 

tigating techniques that will allow the CL algorithm 
to detect these conditions, and expand the range of 
the search in pose space. 

[8] Moravec, H. p., “sensor fusion in evidence grids 
for mobile robots,” A I  Magazine, pp 61-74, 1988. 

We believe that the CL method will be robust to 
the underlying grid representation. We will demon- 
strate the CL method using a Dempster-Shafer ver- 
sion of evidence grids [9]. 

Continuing work also includes the integration of 
CL with frontier-based exploration [12] in order to 
map the room while remaining localized, eliminating 
the a priori map requirement and providing an accu- 
rate, learned long-term map. Initial results indicate 
that accurate maps of the room can be simultaneously 
learned and used for continuous localization. 
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